Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Extreme weather and the proliferation of impervious areas in urban watersheds increases the frequency of flood events and deepens water quality concerns. Bioretention is a type of green infrastructure practice developed to mitigate these impacts by reducing peak flows, runoff volume, and nutrient loads in stormwater. However, studies have shown inconsistency in the ability of bioretention to manage some pollutants, particularly some forms of nitrogen. Innovative sensor and control technologies are being tested to actively manage urban stormwater, primarily in open water stormwater systems such as wet ponds. Through these cyber-physical controls, it may be possible to optimize storage time and/or soil moisture dynamics within bioretention cells to create more favorable conditions for water quality improvements. A column study testing the influence of active control on bioretention system performance was conducted over a nine-week period. Active control columns were regulated based on either maintaining a specific water level or soil moisture content and were compared to free draining (FD) and internal water storage standards. Actively controlled bioretention columns performed similarly, with the soil moisture-based control showing the best performance with over 86% removal of metals and TSS while also exhibiting the highest ammonium removal (43%) and second highest nitrate removal (74%). While all column types showed mostly similar TSS and metal removal trends (median 94 and 98%, respectively), traditionally FD and internal water storage configurations promoted aerobic and anaerobic processes, respectively, which suggests that actively controlled systems have greater potential for targeting both processes. The results suggest that active controls can improve upon standard bioretention designs, but further optimization is required to balance the water quality benefits gained by retention time against storage needs for impending storms.more » « less
-
null (Ed.)Recent GPS studies show that the Indo-Burma subduction system is locked with the implication of a potential large-magnitude earthquake. To inform better seismic hazard models in the region, we need an improved understanding of the crustal structure and the dynamics of the Indo-Burma subduction system. The Bangladesh-India-Myanmar (BIMA) tripartite project deployed 60 broadband seismometers across the subduction system and have been continuously recording data for ~2 years. In this study, we computed receiver functions from 30 high-quality earthquakes (M≥5.9) with epicentral distances between 30º and 90º recorded by the array. The algorithm utilized ensures the uniqueness of the seismic model and provides an uncertainty estimate of every converted wave amplitude. We stacked all the receiver functions produced at each station along the entire transect to generate a cross-sectional model of the average crustal structure. The level of detail in the image is improved by computing higher frequency receiver functions up to 4 Hz. The results represent some of the strongest constraints on crustal structure across the subduction system. Beneath the Neogene accretionary prism's outer belt, we observe a primary conversion associated with the Ganges Brahmaputra Delta that ranges in depth from ~10 km near the deformation front up to ~12 km at the eastern boundary. From the eastern end of the Neogene accretionary prism to the Sagaing Fault, we image the Indian subducting slab and the Central Myanmar basin. The depth-extent of seismicity associated with the Wadati-Benioff zone is consistent with the locations of primary conversions from the subducting plate. We further verify the converted phases of the slab by analyzing azimuthal moveout variations. The Central Myanmar basin is roughly bowl-shaped in cross-section with a maximum thickness of ~15 km about halfway between the Kabaw and Sagaing faults. The average crustal thickness beneath the Ganges-Brahmaputra delta is ~20 km, most likely representing a transitional crust formed from thinning of the continental crust intruded and underplated by igneous rocks. In contrast, the average thickness of the continental crust beneath the Central Myanmar basin is ~40 km. Our results provide a baseline model for future geophysical investigations of the Indo-Burma subduction zone.more » « less
An official website of the United States government

Full Text Available